JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cordycepin confers neuroprotection in mice models of intracerebral hemorrhage via suppressing NLRP3 inflammasome activation.

Neuroinflammation has been recognized as a major contributor to brain injury caused by intracerebral hemorrhage (ICH). Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome acts as an important mediator of inflammatory response in various inflammation-related diseases including hemorrhagic insults. Cordycepin has recently been shown to possess anti-inflammatory effect; however, its role and the possible underlying mechanisms in ICH remain unclear. This study was designed to investigate the neuroprotective effect of cordycepin in mice models of ICH and to elucidate the underlying molecular mechanisms. ICH was induced in male ICR mice by injecting autologous blood infusion stereotactically. Cordycepin was then given intraperitoneally (i.p.) at 30 min after ICH induction. The results demonstrated that NLRP3 inflammasome was activated and exacerbated the inflammatory progression after ICH. Cordycepin treatment significantly alleviated neurological deficits, brain edema, and perihematomal tissue damage following ICH. These changes were accompanied by downregulated NLRP3 inflammasome components expression and a reduction of production and release of inflammasome substrates interleukin-1beta (IL-1β) and interleukin-18 (IL-18). Furthermore, cordycepin ameliorated neuronal death in the perihematomal regions, accompanied by a large reduction in the expression of high-mobility group protein B 1 (HMGB1) post-ICH. In conclusion, this study provides in vivo evidence that cordycepin confers neuroprotective effect in the models of ICH, possibly through the suppression of NLRP3 inflammasome activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app