Add like
Add dislike
Add to saved papers

An unconventional outer-to-inner synthesis strategy for core (Au)-shell nanostructures with photo-electrochemical enhancement.

Nanoscale 2017 April 21
In this work, an outer-to-inner strategy is demonstrated to simultaneously fabricate core-shell NPs and assemble them onto a scaffold. Specifically, the shell material is deposited onto the scaffold first, and then a layer of the core material (Au) is covered on the shell surface. Finally, the core (Au)-shell nanoparticles (NPs) are formed on the scaffold after annealing. As examples, Au-Bi2 S3 , Au-CdS and Au-CdSe core-shell NPs are grown on the surface of ZnO nanorods (NRs) via this strategy and exhibit enhanced photoelectrochemical (PEC) efficiency. The enhanced PEC performance is ascribed to improved light absorption induced by the plasmonic effect, trapped electrons of Au NPs, and cascade band alignment of the shell material and ZnO. The synthetic method gives a universal route to the development of nanodevices with assembled core-shell NPs. The core-shell NPs in the current study possess significant potential as building blocks for future PEC anodes or other solar conversion systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app