Add like
Add dislike
Add to saved papers

Structural Insight into Anaphase Promoting Complex 3 Structure and Docking with a Natural Inhibitory Compound.

BACKGROUND: Anaphase promoting complex (APC) is the biggest Cullin-RING E3 ligase and is very important in cell cycle control; many anti-cancer agents target this. APC controls the onset of chromosome separation and mitotic exit through securin and cyclin B degradation, respectively. Its APC3 subunit identifies the APC activators-Cdh1 and Cdc20.

MATERIALS AND METHODS: The structural model of the APC3 subunit of APC was developed by means of computational techniques; the binding of a natural inhibitory compound to APC3 was also investigated.

RESULTS: It was found that APC3 structure consists of numerous helices organized in anti-parallel and the overall model is superhelical of tetratrico-peptide repeat (TPR) domains. Furthermore, binding pocket of the natural inhibitory compound as APC3 inhibitor was shown.

CONCLUSION: The findings are beneficial to understand the mechanism of the APC activation and design inhibitory compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app