JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle.

BMC Microbiology 2017 April 12
BACKGROUND: Bacteria present in cave often survive by modifying their metabolic pathway or other mechanism. Understanding these adopted bacteria and their survival strategy inside the cave is an important aspect of microbial ecology. Present study focuses on the bacterial community and geochemistry in five caves of Mizoram, Northeast India. The objective of this study was to explore the taxonomic composition and presumed functional diversity of cave sediment metagenomes using paired end Illumina sequencing using V3 region of 16S rRNA gene and bioinformatics pipeline.

RESULTS: Actinobacteria, Proteobacteria, Verrucomicrobia and Acidobacteria were the major phyla in all the five cave sediment samples. Among the five caves the highest diversity is found in Lamsialpuk with a Shannon index 12.5 and the lowest in Bukpuk (Shannon index 8.22). In addition, imputed metagenomic approach was used to predict the functional role of microbial community in biogeochemical cycling in the cave environments. Functional module showed high representation of genes involved in Amino Acid Metabolism in (20.9%) and Carbohydrate Metabolism (20.4%) in the KEGG pathways. Genes responsible for carbon degradation, carbon fixation, methane metabolism, nitrification, nitrate reduction and ammonia assimilation were also predicted in the present study.

CONCLUSION: The cave sediments of the biodiversity hotspot region possessing a oligotrophic environment harbours high phylogenetic diversity dominated by Actinobacteria and Proteobacteria. Among the geochemical factors, ferric oxide was correlated with increased microbial diversity. In-silico analysis detected genes involved in carbon, nitrogen, methane metabolism and complex metabolic pathways responsible for the survival of the bacterial community in nutrient limited cave environments. Present study with Paired end Illumina sequencing along with bioinformatics analysis revealed the essential ecological role of the cave bacterial communities. These results will be useful in documenting the biospeleology of this region and systematic understanding of bacterial communities in natural sediment environments as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app