Add like
Add dislike
Add to saved papers

Pharmacophore generation, atom-based 3D-QSAR and molecular dynamics simulation analyses of pyridine-3-carboxamide-6-yl-urea analogues as potential gyrase B inhibitors.

DNA gyrase subunit B (GyrB) is an attractive drug target for the development of antibacterial agents with therapeutic potential. In the present study, computational studies based on pharmacophore modelling, atom-based QSAR, molecular docking, free binding energy calculation and dynamics simulation were performed on a series of pyridine-3-carboxamide-6-yl-urea derivatives. A pharmacophore model using 49 molecules revealed structural and chemical features necessary for these molecules to inhibit GyrB. The best fitted model AADDR.13 was generated with a coefficient of determination (r²) of 0.918. This model was validated using test set molecules and had a good r² of 0.78. 3D contour maps generated by the 3D atom-based QSAR revealed the key structural features responsible for the GyrB inhibitory activity. Extra precision molecular docking showed hydrogen bond interactions with key amino acid residues of ATP-binding pocket, important for inhibitor binding. Further, binding free energy was calculated by the MM-GBSA rescoring approach to validate the binding affinity. A 10 ns MD simulation of inhibitor #47 showed the stability of the predicted binding conformations. We identified 10 virtual hits by in silico high-throughput screening. A few new molecules were also designed as potent GyrB inhibitors. The information obtained from these methodologies may be helpful to design novel inhibitors of GyrB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app