Add like
Add dislike
Add to saved papers

Matrix Metalloproteinase-28 Is a Key Contributor to Emphysema Pathogenesis.

Chronic obstructive pulmonary disease (COPD) comprises chronic bronchitis and emphysema, and is a leading cause of morbidity and mortality. Because tissue destruction is the prominent characteristic of emphysema, extracellular proteinases, particularly those with elastolytic ability, are often considered to be key drivers in this disease. Several human and mouse studies have implicated roles for matrix metalloproteinases (MMPs), particularly macrophage-derived proteinases, in COPD pathogenesis. MMP-28 is expressed by the pulmonary epithelium and macrophage, and we have found that it regulates macrophage recruitment and polarization. We hypothesized that MMP-28 has contributory roles in emphysema via alteration of macrophage numbers and activation. Because of the established association of emphysema pathogenesis to macrophage influx, we evaluated the inflammatory changes and lung histology of Mmp28-/- mice exposed to 3 and 6 months of cigarette smoke. At earlier time points, we found altered macrophage polarization in the smoke-exposed Mmp28-/- lung consistent with other published findings that MMP-28 regulates macrophage activation. At both 3 and 6 months, Mmp28-/- mice had blunted inflammatory responses more closely resembling nonsmoked mice, with a reduction in neutrophil recruitment and CXCL1 chemokine expression. By 6 months, Mmp28-/- mice were protected from emphysema. These results highlight a previously unrecognized role for MMP-28 in promoting chronic lung inflammation and tissue remodeling induced by cigarette smoke and highlight another potential target to modulate COPD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app