Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photoexcited State Confinement in Two-Dimensional Crystalline Anthracene Monolayer at Room Temperature.

ACS Nano 2017 April 26
Organic thin film electronics place a high demand on bottom-up technology to form a two-dimensionally (2D) functional unit consisting of a single molecular crystalline layer bound to a layered structure. As the strong interaction between a substrate and molecules makes it difficult to evaluate the electronic properties of organic films, the nature of electronic excited states has not been elucidated. Here, we study a 2D crystalline anthracene monolayer electronically decoupled by alkanethiolates on a gold substrate using scanning tunneling microscopy and time-resolved two-photon photoemission spectroscopy and unravel the geometric/electronic structures and excited electron dynamics. Our data reveal that dispersive 2D excited electrons on the surface can be highly coupled with an annihilation of nondispersive excitons that facilitate electron emission with vibronic interaction. Our results provide a fundamental framework for understanding photoexcited anthracene monolayer and show how the coupling between dispersive and nondispersive excited states may assist charge separation in crystalline molecular layers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app