Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata.

Tree Physiology 2017 Februrary 2
The complex regulatory system controlling stomata involves physical and chemical signals that affect guard cell turgor to bring about changes in stomatal conductance (gs). Abscisic acid (ABA) closes stomata, yet the mechanisms controlling foliar ABA status in tree species remain unclear. The importance of foliage-derived ABA in regulating gas exchange was evaluated under treatments that affected phloem export through girdling and reduced water availability in the tree species, Pinus radiata (D. Don). Branch- and whole-plant girdling increased foliar ABA levels leading to declines in gs, despite no change in plant water status. Changes in gs were largely independent of the more transient increases in foliar non-structural carbohydrates (NSC), suggesting that gradual accumulation of foliar ABA was the primary mechanism for reductions in gs and assimilation. Whole-plant girdling eventually reduced root NSC, hindering root water uptake and decreasing foliar water potential, causing a dramatic increase in ABA level in leaves and concentrations in the xylem sap of shoots (4032 ng ml-1), while root xylem sap concentrations remained low (43 ng ml-1). Contrastingly, the drought treatment caused similar increases in xylem sap ABA in both roots and shoots, suggesting that declines in water potential result in relatively consistent changes in ABA along the hydraulic pathway. ABA levels in plant canopies can be regulated independently of changes in root water status triggered by changes by both phloem export and foliar water status.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app