Add like
Add dislike
Add to saved papers

Global genetic variation of select opiate metabolism genes in self-reported healthy individuals.

CYP2D6 is a key pharmacogene encoding an enzyme impacting poor, intermediate, extensive and ultrarapid phase I metabolism of many marketed drugs. The pharmacogenetics of opiate drug metabolism is particularly interesting due to the relatively high incidence of addiction and overdose. Recently, trans-acting opiate metabolism and analgesic response enzymes (UGT2B7, ABCB1, OPRM1 and COMT) have been incorporated into pharmacogenetic studies to generate more comprehensive metabolic profiles of patients. With use of massively parallel sequencing, it is possible to identify additional polymorphisms that fine tune, or redefine, previous pharmacogenetic findings, which typically rely on targeted approaches. The 1000 Genomes Project data were analyzed to describe population genetic variation and statistics for these five genes in self-reported healthy individuals in five global super- and 26 sub-populations. Findings on the variation of these genes in various populations expand baseline understanding of pharmacogenetically relevant polymorphisms for future studies of affected cohorts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app