JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.

Cas9-linked deaminases, also called base editors, enable targeted mutation of single nucleotides in eukaryotic genomes. However, their off-target activity is largely unknown. Here we modify digested-genome sequencing (Digenome-seq) to assess the specificity of a programmable deaminase composed of a Cas9 nickase (nCas9) and the deaminase APOBEC1 in the human genome. Genomic DNA is treated with the base editor and a mixture of DNA-modifying enzymes in vitro to produce DNA double-strand breaks (DSBs) at uracil-containing sites. Off-target sites are then computationally identified from whole genome sequencing data. Testing seven different single guide RNAs (sgRNAs), we find that the rAPOBEC1-nCas9 base editor is highly specific, inducing cytosine-to-uracil conversions at only 18 ± 9 sites in the human genome for each sgRNA. Digenome-seq is sensitive enough to capture off-target sites with a substitution frequency of 0.1%. Notably, off-target sites of the base editors are often different from those of Cas9 alone, calling for independent assessment of their genome-wide specificities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app