Add like
Add dislike
Add to saved papers

Influence of the pump pulse wavelength on the ultrafast demagnetization of Gd(0 0 0 1) thin films.

We studied the magnetization dynamics of gadolinium metal after femtosecond laser excitation recording the x-ray magnetic circular dichroism in reflection (XMCD-R) at the Gd M 5 absorption edge. Varying the photon energy of the pump pulse allows us to change the initial energy distribution of photoexcited carriers. The overall similar response for excitation with 0.95, 1.55 and 3.10 eV photons at comparable pump fluences indicates that ultrafast ballistic carrier transport leads to a homogeneous energy distribution on the femtosecond timescale in the probed sample volume. Differences are observed in the initial ultrafast demagnetization magnitude. They are attributed to an enhanced spin-flip probability at higher electron energies characterizing the non-thermal electron distribution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app