Add like
Add dislike
Add to saved papers

Protective action of B1R antagonist against cerebral ischemia-reperfusion injury through suppressing miR-200c expression of Microglia-derived microvesicles.

BACKGROUND AND OBJECTIVE: Cerebral ischemia-reperfusion (I/R) injury is a common side-effect for cerebral ischemic disease and its therapeutic regimen is limited. Kinin is pro-inflammatory peptide that is released and acts at the site of injury and inflammation such as brain and it works through bradykinin 1 receptor (B1R). The present study was to examine the effect of B1R antagonist on cerebral I/R injury and the potential mechanism.

METHODS: Cerebral I/R injury was induced in mice by transient middle cerebral artery occlusion (MCAO). Neurological function was assessed by Bederson score. Infarct volumes were measured using planimetry. In vitro cell model was made by oxygen-glucose deprivation-Hypoxia/Reoxygenation (OGD-H/R) treatment to N9 microglia cell; and the cultured medium was collected for microvesicles (MVs) isolation and subsequent co-cultured with HT22 cell for sake of assessing their function on neural cell. Relative expression of miR-200c was determined by real time quantitative PCR. Dual luciferase reporter assay was performed to detect the regulatory function of miR-200c to syntaxin-1A.

RESULTS: R715 (B1R antagonist) treatment (500 μg/kg) improves neurologic function after cerebral I/R injury indicated by the decrease of Bederson score and infarct volume. MVs from OGD-H/R treated-N9 cell attenuated neural HT22 cell viability, treatment with LDBK (B1R agonist) accelerated the suppression of HT22 resulted from OGD-H/R; whereas this attenuation was partly weakened by B1R antagonist pretreatment (100 nmol/L). At the same time, B1R antagonist pretreatment caused downregulation of miR-200c in N9 cell and N9-derived MVs, and contributed to syntaxin-1A over expression in HT22 cell. Result of luciferase reporter assay suggested that miR-200c can regulate syntaxin-1A expression. MVs from miR-200c knockdown N9 cells medium had the same effect of B1R antagonist that caused the upregulation of syntaxin-1A and improved OGD-H/R-induced reduction of HT22 cell viability.

CONCLUSION: Our data suggested that blockage of B1R by B1R antagonist provides neuroprotection action through suppressing signaling delivery of microglia-MVs-miR-200c to neural cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app