Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Proton Transfer in Perfluorosulfonic Acid Fuel Cell Membranes with Differing Pendant Chains and Equivalent Weights.

Proton transfer in the nanoscopic water channels of polyelectrolyte fuel cell membranes was studied using a photoacid, 8-hydroxypyrene-1,3,6-trisulfonic acid sodium salt (HPTS), in the channels. The local environment of the probe was determined using 8-methoxypyrene-1,3,6-trisulfonic acid sodium salt (MPTS), which is not a photoacid. Three fully hydrated membranes, Nafion (DuPont) and two 3M membranes, were studied to determine the impact of different pendant chains and equivalent weights on proton transfer. Fluorescence anisotropy and excited state population decay data that characterize the local environment of the fluorescent probes and proton transfer dynamics were measured. The MPTS lifetime and anisotropy results show that most of the fluorescent probes have a bulk-like water environment with a relatively small fraction interacting with the channel wall. Measurements of the HPTS protonated and deprotonated fluorescent bands' population decays provided information on the proton transport dynamics. The decay of the protonated band from ∼0.5 ns to tens of nanoseconds is in part determined by dissociation and recombination with the HPTS, providing information on the ability of protons to move in the channels. The dissociation and recombination is manifested as a power law component in the protonated band fluorescence decay. The results show that equivalent weight differences between two 3M membranes resulted in a small difference in proton transfer. However, differences in pendant chain structure did significantly influence the proton transfer ability, with the 3M membranes displaying more facile transfer than Nafion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app