Add like
Add dislike
Add to saved papers

The role of ligands in the mechanical properties of Langmuir nanoparticle films.

Soft Matter 2017 May 4
Langmuir monolayers of ligand-capped inorganic nanoparticles exhibit rich morphologies under lateral compression such as wrinkling, folding, and multilayer nucleation. We demonstrate that the ligands play a crucial role in the mechanical properties of nanoparticle films by probing the morphology and anisotropic stress response during lateral compression of films with systematically varied ligand concentrations. Increasing the ligand concentration of the films past a threshold value inhibits monolayer wrinkling and folding in favor of multilayer formation, and sharply reduces the compressive and shear moduli. We attribute these drastic mechanical effects to modifications to the ligand interactions between adjacent particles as well as to two-dimensional crystalline structure changes occurring on the scale of tens of particles, as determined by transmission electron microscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app