JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Design of hair-like appendages and comparative analysis on their coordination toward steady and efficient swimming.

The locomotion of water beetles has been widely studied in biology owing to their remarkable swimming skills. Inspired by the oar-like legs of water beetles, designing a robot that swims under the principle of drag-powered propulsion can lead to highly agile mobility. But its motion can easily be discontinuous and jerky due to backward motions (i.e. retraction) of the legs. Here we proposed novel hair-like appendages and consider their coordination to achieve steady and efficient swimming on the water surface. First of all, we propose several design schemes and fabrication methods of the hair-like appendages, which can passively adjust their projected area while obtaining enough thrust. The coordination between the two pairs of legs, as with water beetles in nature, were also investigated to achieve steady swimming without backward movement by varying the beating frequency and phase of the legs. To verify the functionality of the hair-like appendages and their coordinations, six different types of appendages were fabricated, and two robots (one with a single pair of legs and the other with two pairs of legs) were built. Locomotion of the robots was extensively compared through experiments, and it was found that steady swimming was achieved by properly coordinating the two pairs of legs without sacrificing their speed. Also, owing to the lower velocity fluctuation during swimming, it was shown that using two pairs of legs was more energy efficient than the robot with single pair of legs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app