Add like
Add dislike
Add to saved papers

Depletion-Resistant CD4 T Cells Enhance Thymopoiesis During Lymphopenia.

Lymphoablation is routinely used in transplantation, and its success is defined by the balance of pathogenic versus protective T cells within reconstituted repertoire. While homeostatic proliferation and thymopoiesis may both cause T cell recovery during lymphopenia, the relative contributions of these mechanisms remain unclear. The goal of this study was to investigate the role of the thymus during T cell reconstitution in adult allograft recipients subjected to lymphoablative induction therapy. Compared with euthymic mice, thymectomized heart allograft recipients demonstrated severely impaired CD4 and CD8 T cell recovery and prolonged heart allograft survival after lymphoablation with murine anti-thymocyte globulin (mATG). The injection with agonistic anti-CD40 mAb or thymus transplantation only partially restored T cell reconstitution in mATG-treated thymectomized mice. After mATG depletion, residual CD4 T cells migrated into the thymus and enhanced thymopoiesis. Conversely, depletion of CD4 T cells before lymphoablation inhibited thymopoiesis at the stage of CD4- CD8- CD44hi CD25+ immature thymocytes. This is the first demonstration that the thymus and peripheral CD4 T cells cooperate to ensure optimal T cell reconstitution after lymphoablation. Targeting thymopoiesis through manipulating functions of depletion-resistant helper T cells may thus improve therapeutic benefits and minimize the risks of lymphoablation in clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app