Add like
Add dislike
Add to saved papers

Physicochemical characterization of water-soluble chitosan derivatives with singlet oxygen quenching and antibacterial capabilities.

New water-soluble chitosan derivatives (WSCh) were obtained by Maillard reaction (MR) between glucosamine (GA) with both low and medium molecular weight chitosans (Ch). The WSCh showed larger solubility than the respective Ch, while their deacetylation degree (DD) decreased by approximately 12%. Infrared spectroscopy experiments of WSCh confirmed the formation of imine bonds after MR with intensified pyranose structure, and sugar molecules as polymer branches. However, a 6-times reduction of the molecular weight of WSCh was measured, indicating the breakdown of the polysaccharide chain during the MR. The polysaccharides quenched singlet molecular oxygen (1 O2 ), with rate quenching constants correlating with the DD value of the samples, suggesting the important role of amino groups (-NH2 ) in the deactivation of 1 O2 . Additionally, all polysaccharides presented antimicrobial activity against pathogenic bacteria, e.g. Staphylococcus aureus, Escherichia coli, Salmonella sp., Enterococcus faecalis and Listeria ivanovii, as tested by their minimum inhibitory concentration (MIC). This way we obtained new water-soluble polysaccharides, with similar functional properties to those presented by native Ch, enhancing its potential application as carrier material for bioactive compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app