Add like
Add dislike
Add to saved papers

Universal ratiometric electrochemical biosensing platform based on mesoporous platinum nanocomposite and nicking endonuclease assisted DNA walking strategy.

The occurrence and development of many complex diseases are associated with various molecules, whose contents are rarely in the early stage of the disease. Thus a universal platform for the ultrasensitive detection of multilevel biomarkers should be developed. In this study, we introduced an electrochemical biosensing system based on nicking endonuclease (Nt.BbvCI) assisted DNA walking strategy. We successfully constructed a universal signal-off-on ratiometric electrochemical biosensor for various biomolecules, including small molecules, nucleic acids, and proteins, by progressively optimizing the schematics (schemes 1, 2, and 3). The MB-hairpin probes (MB-HPs) acted as a signal-off probe, and nanocomposites (MPNs@DOX@DNA2) acted as a conventional signal-on probe (scheme 3). With the aid of the MPNs@DOX@DNA2 and Nt.BbvCI assisted DNA walking mechanism, the designed ratiometric electrochemical biosensor showed a high sensitivity and broad detection range. In addition, the proposed method can be utilized to detect diverse targets quantitatively by changing the sequence of aptamers under optimum experimental conditions. Furthermore, it has been widely proved to realize well-accepted signal response in identifying complex samples, thereby resulting in an wide prospect for bioanalysis and clinical diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app