Add like
Add dislike
Add to saved papers

Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide.

This work demonstrates the facile and efficient preparation protocol of β-Cyclodextrin-reduced graphene oxide modified glassy carbon electrode (β-CD/RGO/GCE) sensor for an impressive chiral selectivity analysis for phenylalanine enantiomers. In this work, the immobilization of β-CD over graphene sheets allows the excellent enantiomer recognition due to the large surface area and high conductivity of graphene sheets and extraordinary supramolecular (host-guest interaction) property of β-CD. The proposed sensor was well characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and electrochemical impedance spectroscopy (EIS) techniques. The analytical studies demonstrated that the β-CD/RGO/GCE exhibit superior chiral recognition toward L-phenylalanine as compared to D-phenylalanine. Under optimum conditions, the developed sensor displayed a good linear range from 0.4 to 40µM with the limit of detection (LOD) values of 0.10µM and 0.15µM for l- and D-phenylalanine, respectively. Furthermore, the proposed sensor exhibits good stability and regeneration capacity. Thus, the as-synthesized material can be exploited for electrochemical enantiomer recognition successfully.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app