Add like
Add dislike
Add to saved papers

Syndecan-4 deficiency accelerates the transition from compensated hypertrophy to heart failure following pressure overload.

Increasing evidence suggests that a mismatch between angiogenesis and myocardial growth contributes to the transition from adaptive cardiac hypertrophy to heart failure following pressure overload. Syndecan-4 is a transmembrane proteoglycan that binds to growth factors and extracellular matrix proteins and is critical in focal adhesion formation. However, its effects on coronary angiogenesis during pressure overload-induced heart failure have not been studied. Here, we hypothesize that syndecan-4 modulates cardiac remodeling in response to pressure overload through its ability to regulate adaptive angiogenesis. Syndecan-4 knockout (syndecan-4 KO) and wild-type (WT) mice were subjected to pressure overload induced by transverse aortic constriction (TAC). Syndecan-4 KO mice exhibited reduced capillary density, attenuated cardiomyocyte size, and worsened left ventricular cardiac function after TAC surgery compared with WT mice. Moreover, syndecan-4 KO mice showed a significant decrease in protein kinase C alpha expression. Our data suggest that syndecan-4 is essential for the compensated hypertrophy and the maintenance of cardiac function during the process of heart failure following pressure overload.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app