Add like
Add dislike
Add to saved papers

Systematic identification of the protein substrates of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T1/T2/T3 using a human proteome microarray.

Proteomics 2017 June
O-GalNAc glycosylation is the initial step of the mucin-type O-glycosylation. In humans, it is catalyzed by a family of 20 homologous UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). So far, there is very limited information on their protein substrate specificities. In this study, we developed an on-chip ppGalNAc-Ts assay that could rapidly and systematically identify the protein substrates of each ppGalNAc-T. In detail, we utilized a human proteome microarray as the protein substrates and UDP-GalNAz as the nucleotide sugar donor for click chemistry detection. From a total of 16 368 human proteins, we identified 570 potential substrates of ppGalNAc-T1, T2, and T3. Among them, 128 substrates were overlapped, while the rest were isoform specific. Further cluster analysis of these substrates showed that the substrates of ppGalNAc-T1 had a closer phylogenetic relationship with that of ppGalNAc-T3 compared with ppGalNAc-T2, which was consistent with the topology of the phylogenetic tree of these ppGalNAc-Ts. Taken together, our microarray-based enzymatic assay comprehensively reveals the substrate profile of the ppGalNAc-T1, T2, and T3, which not only provides a plausible explanation for their partial functional redundancy as reported, but clearly implies some specialized roles of each enzyme in different biological processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app