Journal Article
Review
Add like
Add dislike
Add to saved papers

Catalytic Systems for the Cross-Linking of Organosilicon Polymers.

Silicones and silicone rubbers are omnipresent in household and industrial products such as lubricants, coatings, sealants, insulators, medical devices, etc. This plethora of applications arises from their unparalleled properties including hydrophobicity, low surface energy, chemical inertness, extreme temperature stability, elasticity, and biocompatibility. Even though silicones have been known for more than five decades, their chemistry is still far from fully understood. Industrially, the vast majority of processes for their synthesis, transformation, and use are based on rather well established, alas outdated technologies, which are frequently empirical and poorly investigated. This review attempts to summarize the different approaches for the synthesis of silicone rubbers by vulcanization or curing of silicone polymers, the catalysts used, and the corresponding reaction mechanisms. Apart from the well-known methods (radical, hydrosilylation, and metal-based condensation), novel approaches such as organo- and bio-catalysis are also addressed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app