Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase.

Scientific Reports 2017 April 11
In this study, the authors investigated the anti-melanogenic effects of 3,8-dihydroxyquinoline (jineol) isolated from Scolopendra subspinipes mutilans, the mechanisms responsible for its inhibition of melanogenesis in melan-a cells, and its antioxidant efficacy. Mushroom tyrosinase activities and melanin contents were determined in melan-a cells, and the protein and mRNA levels of MITF, tyrosinase, TYRP-1, and TYRP-2 were assessed. Jineol exhibited significant, concentration-dependent antioxidant effects as determined by DPPH, ABTS, CUPRAC, and FRAP assays. Jineol significantly inhibited mushroom tyrosinase activity by functioning as an uncompetitive inhibitor, and markedly inhibited melanin production and intracellular tyrosinase activity in melan-a cells. In addition, jineol abolished the expressions of tyrosinase, TYRP-1, TYRP-2, and MITF, thereby blocking melanin production and interfering with the phosphorylations of ERK1/2 and p38. Furthermore, specific inhibitors of ERK1/2 and p38 prevented melanogenesis inhibition by jineol, and the proteasome inhibitor (MG-132) prevented jineol-induced reductions in cellular tyrosinase levels. Taken together, jineol was found to stimulate MAP-kinase (ERK1/2 and p38) phosphorylation and the proteolytic degradation pathway, which led to the degradations of MITF and tyrosinase, and to suppress the productions of melanin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app