Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Knockdown of toll-like receptor 4 signaling pathways ameliorate bone graft rejection in a mouse model of allograft transplantation.

Scientific Reports 2017 April 11
Non-union occurring in structural bone grafting is a major problem in allograft transplantation because of impaired interaction between the host and graft tissue. Activated toll-like receptor (TLR) induces inflammatory cytokines and chemokines and triggers cell-mediated immune responses. The TLR-mediated signal pathway is important for mediating allograft rejection. We evaluated the effects of local knockdown of the TLR4 signaling pathway in a mouse segmental femoral graft model. Allografts were coated with freeze-dried lentiviral vectors that encoded TLR4 and myeloid differentiation primary response gene 88 (MyD88) short-hairpin RNA (shRNA), which were individually transplanted into the mice. They were assessed morphologically, radiographically, and histologically for tissue remodeling. Union occurred in autografted but not in allografted mice at the graft and host junctions after 4 weeks. TLR4 and MyD88 expression was up-regulated in allografted mice. TLR4 and MyD88 shRNAs inhibited TLR4 and MyD88 expression, which led to better union in the grafted sites. More regulatory T-cells in the draining lymph nodes suggested inflammation suppression. Local inhibition of TLR4 and MyD88 might reduce immune responses and ameliorate allograft rejection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app