Add like
Add dislike
Add to saved papers

Forbidden word entropy of cerebral oximetric values predicts postoperative neurocognitive decline in patients undergoing aortic arch surgery under deep hypothermic circulatory arrest.

PURPOSE: Up to 53% of cardiac surgery patients experience postoperative neurocognitive decline. Cerebral oximetry is designed to detect changes in cerebral tissue saturation and therefore may be useful to predict which patients are at risk of developing neurocognitive decline.

METHODS: This is a retrospective analysis of a prospective study originally designed to determine if treatment of cerebral oximetry desaturation is associated with improvement in postoperative cognitive dysfunction in patients undergoing aortic reconstruction under deep hypothermic circulatory arrest. Cognitive function was measured, preoperatively and 3 months postoperatively, with 15 neuropsychologic tests administered by a psychologist; the individual test scores were summed and normalized. Bilateral cerebral oximetry data were stored and analyzed using measures of entropy. Cognitive decline was defined as any decrease in the summed normalized score from baseline to 3 months.

RESULTS: Seven of 17 (41%) patients suffered cognitive decline. There was no association between baseline cerebral oximetry and postoperative cognitive dysfunction. Nor were changes in oximetry values associated with cognitive decline. However, cognitive decline was associated with loss of forbidden word entropy (FwEn) (correlation: Rho ρ = 0.51, P = 0.037 for left cerebral oximetry FwEn and ρ = 0.54, P = 0.025 for right cerebral oximetry FwEn).

CONCLUSION: Postoperative cognitive decline was associated with loss of complexity of the time series as shown by a decrease in FwEn from beginning to end of the case. This suggests that regulation of cerebral oximetry is different between those who do and those who do not develop cognitive decline.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app