Add like
Add dislike
Add to saved papers

miR-597 inhibits breast cancer cell proliferation, migration and invasion through FOSL2.

Many reports suggest that the discovery of microRNAs (miRNAs) might provide a novel therapeutical target for many diseases, even of human cancers; however, there are no reports on the role of miR-597 in human cancers. In the present study, by detecting mRNA expression with qRT-PCR, compared with the adjacent normal tissues we found that miR-597 was significantly downregulated in breast cancer tissues. By using the MTT assay, the cell wound-healing assay and the cell invasion assay, we demonstrated that miR-597 mimics were able to suppress breast cancer cell proliferation, migration and invasion. Additionally, with flow cytometry, we found that mir-597 influenced the growth of breast cancer cells through regulating the G1-S phase transition. Furthermore, we identified one binding site for miR-597 at the 3'UTR of the FOSL2 gene, using bioinformatics methods and the luciferase reporter assay, it was confirmed that FOSL2 was a direct target of miR-597. Moreover, overexpression of FOSL2 in MDA-MB‑231 and SK-BR-3 cells can block the vast majority of the miR-597 roles, suggesting that miR-597 acts as a tumor suppressor in breast cancer cells by the downregulation of FOSL2. Additionally, we also found a negative correlation between the expression of FOSL2 and miR-597 in the tumor samples. This new regulatory mechanism in breast cancer may provide another method for diagnosis and therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app