Add like
Add dislike
Add to saved papers

Analysis of normal human retinal vascular network architecture using multifractal geometry.

AIM: To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina.

METHODS: Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images, corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms, applying the standard box-counting method. Statistical analyses were performed using the GraphPad InStat software.

RESULTS: The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions (Dq ) for q=0, 1, 2, the width of the multifractal spectrum (Δα=αmax - αmin ) and the spectrum arms' heights difference (|Δf|) of the normal images were expressed as mean±standard deviation (SD): for segmented versions, D0 =1.7014±0.0057; D1 =1.6507±0.0058; D2 =1.5772±0.0059; Δα=0.92441±0.0085; |Δf|= 0.1453±0.0051; for skeletonised versions, D0 =1.6303±0.0051; D1 =1.6012±0.0059; D2 =1.5531±0.0058; Δα=0.65032±0.0162; |Δf|= 0.0238±0.0161. The average of generalized dimensions (Dq ) for q=0, 1, 2, the width of the multifractal spectrum (Δα) and the spectrum arms' heights difference (|Δf|) of the segmented versions was slightly greater than the skeletonised versions.

CONCLUSION: The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app