Add like
Add dislike
Add to saved papers

Biomechanics of sclera crosslinked using genipin in rabbit.

AIM: To strengthen the biomechanics of collagen by crosslinking rabbit scleral collagen with genipin to develop a new therapy for preventing myopic progression.

METHODS: Ten New Zealand rabbits were treated with 0.5 mmol/L genipin injected into the sub-Tenon's capsule in the right eyes. Untreated contralateral eyes served as the control. The treated area was cut into scleral strips measuring 4.0 mm×10.0 mm for stress-strain measurements ( n =5). The remaining five treated eyes were prepared for histological examination.

RESULTS: Compared to the untreated scleral strips, the genipin-crosslinked scleral strips showed that the ultimate stress and Young's modulus at 10% strain were increased by the amplitude of 130% and 303% respectively, ultimate strain was decreased by 24%. There had no α-smooth muscle actin (α-SMA) positive cells in control and treated sclera. Histologically, there was no sign of apoptosis in the sclera, choroid, and retina; and no side effects were found in the peripheral cornea and optic nerve adjacent to the treatment area.

CONCLUSION: Genipin induced crosslinking of collagen can increase its biomechanical behavior by direct strengthening of the extracellular matrix in rabbit sclera, with no α-SMA expression seen in the myofibroblasts. As there is no evidence of cytotoxicity in the scleral, choroidal, and retinal cells, genipin is likely a promising agent to strengthen the weakened sclera to prevent myopic progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app