Add like
Add dislike
Add to saved papers

Effect of Accelerated Aging on Color Change of Direct and Indirect Fiber-Reinforced Composite Restorations.

OBJECTIVES: The aim of this study was to assess the effect of artificial accelerated aging (AAA) on color change of direct and indirect fiber-reinforced composite (FRC) restorations.

MATERIALS AND METHODS: Direct (Z250) and indirect (Gradia) composite resins were reinforced with glass (GF) and polyethylene fibers (PF) based on the manufacturers' instructions. Forty samples were fabricated and divided into eight groups (n=5). Four groups served as experimental groups and the remaining four served as controls. Color change (ΔE) and color parameters (ΔL*, Δa*, Δb*) were read at baseline and after AAA based on the CIELAB system. Three-way ANOVA and Tukey's test were used for statistical analysis.

RESULTS: Significant differences were found in ΔE, ΔL*, Δa* and Δb* among the groups after AAA (P<0.05). Most of the studied samples demonstrated an increase in lightness and a red-yellow shift after AAA.

CONCLUSIONS: The obtained ΔE values were unacceptable after AAA (ΔE≥ 3.3). All indirect samples showed a green-blue shift with a reduction in lightness except for Gradia/PF+ NuliteF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app