Add like
Add dislike
Add to saved papers

Effects of Interfacial Properties of a Surface Modified Surface Plasmon Resonance Chip on Protein Immobilization Performance.

In order to confirm the correlation between interfacial properties of modified surface plasmon resonance (SPR) chips and their SPR responses to immobilized anti-IgG, SPR chips were modified by mercaptoundecanoic acid, poly(ethylene glycol) diacrylate (PEG), PEG-based copolymer and cyclodextrin coupled PEG using self-assembled or radical polymerization methods. The resulting interfacial properties such as film thickness and hydrophilicity were characterized by AFM, elliptic polarization scanners and contact angle meter. Immobilization of human IgG on the modified chips was achieved by EDC/NHS activation through an amide bond. The association between fixed IgG and free anti-IgG was reflected by the variation of SPR responses and the binding ability was evaluated by Langmuir isotherms. As observed, the adsorption between IgG and anti-IgG was affected by the interfacial properties of different modifiers, such that a chip with a thinner and more hydrophilic layer may result in a higher SPR response, producing a larger adsorption equilibrium constant for protein interaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app