Add like
Add dislike
Add to saved papers

Electron-Transfer Rate in Potential-Modulated Redox Reactions with Electro-Active Optical Waveguides.

A novel methodology has been developed to determine electron-transfer rate in electrically driven redox reactions. Based on a widely adopted electrical circuit describing faradaic processes in an electrochemical cell, the approach uses a combination of impedance data from optical and electrical measurements that are simultaneously acquired in a spectroelectrochemical experiment. Once the consistency of our methodology was experimentally corroborated, it was put to practice for investigating electron-transfer rate of cytochrome c adsorbates at very low concentrations on an indium tin oxide electrode by using a highly sensitive, single-mode, electro-active, integrated optical waveguide platform. Different surface densities of redox species on the electrode interface and different ionic strengths in the electrolyte solution were studied. Higher surface densities and higher ionic strengths are shown to slow down the electron-transfer process between the redox molecules and the working electrode.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app