JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Effect of nitric oxide to axonal degeneration in multiple sclerosis via downregulating monocarboxylate transporter 1 in oligodendrocytes.

Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS). Axonal degeneration, one of the main pathological characteristics of MS, is affected by nitric oxide (NO). In turn, NO induces mitochondrial dysfunction of neurons and glial cells. Inadequate glucose causes monocarboxylate transporter 1 (MCT1) to transfer lactate from oligodendrocytes (OLs) to neurons, which decreases MCT1 and results in energy substrate deficit (mainly lactate) in axons. The condition gradually leads to axonal degeneration. This study proposes that NO-induced MCT1 down-regulation in OLs may be involved in the pathological process of axonal degeneration, which eventually leads to MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app