Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Persistent blood glucose reduction upon repeated transcranial electric stimulation in men.

BACKGROUND: Transcranial direct current stimulation (tDCS) of the human brain increases systemic glucose tolerance.

OBJECTIVE/HYPOTHESIS: To investigate whether this effect persists after one week of repeated stimulation. Because systemic glucose uptake relates to brain energy homeostasis, we concomitantly measured cerebral high-energy phosphate metabolites.

METHODS: In a sham-controlled crossover design, 14 healthy men were tested under daily anodal tDCS vs. sham for 8 days. Systemic glucose metabolism was examined by concentrations of circulating glucose and insulin. Cerebral energy metabolism - i.e. adenosine triphosphate (ATP) and phosphocreatine (PCr) levels - was assessed by 31 phosphorous magnetic resonance spectroscopy.

RESULTS: Blood glucose concentrations were distinctly lower upon tDCS compared with sham stimulation on day 1. This effect persisted on day 8, while serum insulin levels remained persistently unchanged. Transcranial stimulation increased mean levels of ATP and PCr compared with sham on day 1 only. Blood glucose concentrations negatively correlated with PCr content after repeated daily stimulation.

CONCLUSIONS: Our data confirm that tDCS reduces blood glucose through an insulin-independent mechanism. This effect persists after 8 days of repeated stimulation and relates to brain energy metabolism. Therefore, transcranial electric stimulation may be a promising non-pharmacological adjuvant option to treat systemic disorders such as glucose intolerance or type 2 diabetes mellitus with a low side-effect profile.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app