Add like
Add dislike
Add to saved papers

Chemical and canine analysis as complimentary techniques for the identification of active odors of the invasive fungus, Raffaelea lauricola.

Talanta 2017 June 2
Raffaelea lauricola, a fungus causing a vascular wilt (laurel wilt) in Lauraceae trees, was introduced into the United States in the early 2000s. It has devastated forests in the Southeast and has now moved into the commercial avocado groves in southern Florida. Trained detection canines are currently one of the few successful methods for early detection of pre-symptomatic diseased trees. In order to achieve the universal and frequent training required to have successful detection canines, it is desirable to create accessible, safe, and long-lasting training aids. However, identification of odorants and compounds is limited by several factors, including both the availability of chemicals and the need to present chemicals individually and in combination to detection canines. A method for the separation and identification of volatile organic compounds (VOCs) from environmental substances for the creation of such a canine training aid is presented here. Headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to identify the odors present in avocado trees infected with the R. lauricola phytopathogen. Twenty-eight compounds were detected using this method, with nine present in greater than 80% of samples. The majority of these compounds were not commercially available as standard reference materials, and a canine trial was designed to identify the active odors without the need of pure chemical compounds. To facilitate the creation of a canine training aid, the VOCs above R. lauricola were separated by venting a 0.53mm ID solgel-wax gas chromatography column to the atmosphere. Ten minute fractions of the odor profile were collected on cotton gauze in glass vials and presented to the detection canines in a series of field trials. The canines alerted to the VOCs from the vials that correspond to a portion of the chromatogram containing the most volatile species from R. lauricola. This innovative fractionation and collection method can be used to develop reliable and cost effective canine training aids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app