Add like
Add dislike
Add to saved papers

WBP2 modulates G1/S transition in ER+ breast cancer cells and is a direct target of miR-206.

PURPOSE: The mechanisms underlying the oncogenic properties of WW domain binding protein 2 (WBP2) in breast cancer have not been fully understood. In this study, we explored the role of WBP2 in cell cycle regulation in ER+ breast cancer cells and how it is regulated in the cancer cells.

METHODS: The association between WBP2 expression and prognosis in ER+ breast cancer was assessed by data mining in Breast Cancer Gene-Expression Miner v4.0. Cell cycle was assessed by PI staining and flow cytometry. EdU staining was applied to visualize cells in S phase. The binding between miR-206 and WBP2 were verified by dual luciferase assay. CCK-8 assay and flow cytometric analysis were applied to assess the functional role of WBP2 and miR-206 in the cancer cells.

RESULTS: High WBP2 expression correlates with higher risk of any events (AE) and metastatic relapse (MR) and also indicates shorter AE-free survival and MR-free survival in ER+ breast cancer patients. In both MCF-7 and BT474 cells, WBP can influence the expression of G1/S-related cell cycle proteins, including p21, CDK4, and cyclin D1. In addition, WBP2 overexpression resulted in facilitated G1/S transition, while WBP2 knockdown impaired the transition. The 3'UTR of WBP2 has a conserved miR-206 binding site. Functionally, miR-206 knockdown decreased tamoxifen sensitivity in tamoxifen-sensitive (Tam(S)) MCF-7 cells, while miR-206 overexpression and WBP2 knockdown enhanced the sensitivity in tamoxifen-resistant (Tam(R)) MCF-7 cells.

CONCLUSION: Based on these findings, we infer that the miR-206/WBP2 axis can modulate tamoxifen sensitivity via regulating G1/S progression in ER+ breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app