Add like
Add dislike
Add to saved papers

Salvianolic Acid A Protects H9c2 Cells from Arsenic Trioxide-Induced Injury via Inhibition of the MAPK Signaling Pathway.

BACKGROUND/AIMS: This study aimed to investigate whether Salvianolic acid A (Sal A) conferred cardiac protection against Arsenic trioxide (ATO)-induced cardiotoxicity in H9c2 cells by inhibiting MAPK pathways activation.

METHODS: H9c2 cardiac cells were exposed to 10 µM ATO for 24 h to induce cytotoxicity. The cells were pretreated with Sal A for 4 h before exposure to ATO. Cell viability was determined utilizing the MTT assay. The percentage of apoptosis was measured by a FITC-Annexin V/PI apoptosis kit for flow cytometry. Mitochondrial membrane potential (∆Ψm) was detected by JC-1. The intracellular ROS levels were measured using an Image-iTTM LIVE Green Reactive Oxygen Species Detection Kit. The apoptosis-related proteins and the MAPK signaling pathways proteins expression were quantified by Western blotting.

RESULTS: Sal A pretreatment increased cell viability, suppressed ATO-induced mitochondrial membrane depolarization, and significantly altered the apoptotic rate by enhancing endogenous antioxidative enzyme activity and ROS generation. Signal transduction studies indicated that Sal A suppressed the ATO-induced activation of the MAPK pathway. More importantly, JNK, ERK, and p38 inhibitors mimicked the cytoprotective activity of Sal A against ATO-induced injury in H9c2 cells by increasing cell viability, up-regulating Bcl-2 protein expression, and down-regulating both Bax and caspase-3 protein expression.

CONCLUSION: Sal A decreases the ATO-induced apoptosis and necrosis of H9c2 cells, and the underlying mechanisms of this protective effect of Sal A may be connected with the MAPK pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app