Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis.

Nuclear receptors (NR), the largest family of transcription factors, control many physiological and pathological processes. To gain insight into hepatic NR and their potential as therapeutic targets in cholestatis, we determined their expression in individual cell types of the mouse liver in normal and cholestatic conditions. Hepatocytes, cholangiocytes, hepatic stellate cells (HSC), sinusoidal endothelial cells (SEC) and Kupffer cells (KC) were isolated from the liver of mice with acute or chronic cholestasis (i.e. bile duct-ligated or Abcb4-/- mice, respectively) and healthy controls. The expression of 43 out of the 49 NR was evidenced by RT-qPCR in one or several liver cell types. Expression of four NR was restricted to non-parenchymal liver cells. In normal conditions, NR were expressed at higher levels in individual cell types when compared to total liver. Half of the NR expressed in the liver had maximal expression in non-parenchymal cells. After bile duct ligation, NR mRNA changes occurred mostly in non-parenchymal cells and mainly consisted in down-regulations. In Abcb4-/- mice, NR mRNA changes were equally frequent in hepatocytes and non-parenchymal cells. Essentially down-regulations were found in hepatocytes, HSC and cholangiocytes, as opposed to up-regulations in SEC and KC. While undetectable in total liver, Vdr expression was up-regulated in all non-parenchymal cells in Abcb4-/- mice. In conclusion, non-parenchymal liver cells are a major site of NR expression. During cholestasis, NR expression is markedly altered mainly by down-regulations, suggesting major changes in metabolic activity. Thus, non-parenchymal cells are important new targets to consider in NR-directed therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app