COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Analysis of effective and organ dose estimation in CT when using mA modulation: A single scanner pilot study.

Radiography 2017 May
INTRODUCTION: Effective dose (ED) estimation in CT examinations can be obtained by combining dose length product (DLP) with published ED per DLP coefficients or performed using software. These methods do not account for tube current (mA) modulation which is influenced by patient size. The aim of the work was to compare different methods of organ and ED estimation to measured values when using mA modulation in CT chest, abdomen and pelvis examinations.

METHOD: Organ doses from CT of the chest, abdomen and pelvis were measured using digital dosimeters and a dosimetry phantom. ED was calculated. Six methods of estimating ED accounting for mA modulation were performed using ImPACT CTDosimetry and Dose Length Product to ED coefficients. Corrections for the phantom mass were applied resulting in 12 estimation methods. Estimated organ doses from ImPACT CTDosimtery were compared to measured values.

RESULTS: Calculated EDs were; chest 12.35 mSv (±1.48 mSv); abdomen 8.74 mSv (±1.36 mSv) and pelvis 4.68 mSv (±0.75 mSv). There was over estimation in all three anatomical regions. Correcting for phantom mass improved agreement between measured and estimated ED. Organ doses showed overestimation of dose inside the scan range and underestimation outside the scan range.

CONCLUSION: Reasonable estimation of effective dose for CT of the chest and abdomen can be obtained using ImPACT CTDosimetry software or k-coefficients. Further work is required to improve the accuracy of ED estimation from CT of the pelvis. Accuracy of organ dose estimation has been shown to depend on the inclusion or exclusion of the organ from the scan range.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app