Add like
Add dislike
Add to saved papers

Enhanced methane production by semi-continuous mesophilic co-digestion of potato waste and cabbage waste: Performance and microbial characteristics analysis.

Anaerobic granular sludge was used as an inoculum for co-digestion of potato waste (PW) and cabbage waste (CW) in batch and semi-continuous modes at 37±1°C for enhanced methane generation. Batch test results indicated that an equal proportion (1:1) by volatile solid was the optimal mixing ratio for co-digestion of PW and CW. Semi-continuous co-digestion process results showed that the stepwise increasing of the organic loading rates from 1.0 to 5.0kgVS/m(3)·d improved the methane yield from 224 to 360mL/g-VS. And the highest value was respectively 18.4% and 24.1% higher as compared to the mon-digestion of PW and CW. Further investigation with high-throughput sequencing analysis revealed that the enhanced methane generation was attributed to the partial shift from archaeal Methanosaeta to Methanosarcina and Methanobacterium, and from bacterial Firmicutes to Bacteroidetes and Proteobacteria. The volatile fatty acids concentration accounted for the modification of microbial communities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app