Add like
Add dislike
Add to saved papers

On the Fine-Tuning of the Excited-State Intramolecular Proton Transfer (ESIPT) Process in 2-(2'-Hydroxybenzofuran)benzazole (HBBX) Dyes.

Herein, a full investigation of the optical properties and first-principles calculations of a large series of original 2-(2'-hydroxybenzofuran)benzazole (HBBX) dyes is described. The electronic substitution on the π-conjugated core of the fluorophores and the nature of the heteroatom (O, S, N) was varied extensively to assess the necessary parameters to trigger a partial frustration of the excited-state intramolecular proton transfer (ESIPT) process, which results in the emission of both tautomers, that is, enol and keto (E* and K*). The optical properties, studied in solution and in the solid state, revealed the appearance of either an intense single K* or a dual E*/K* emission; a feature that is highly dependent on the electronic substitution (donating or accepting), the heteroelement, and the close environment. Subtle modifications of these parameters allowed the establishment of structure-property relationships that were successfully rationalized by first-principles calculations. In particular, the E*/K* emission intensity ratio was shown to be directly related to the free energies of the two emissive tautomers in the excited state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app