Add like
Add dislike
Add to saved papers

Regulation of Acetate Utilization by Monocarboxylate Transporter 1 (MCT1) in Hepatocellular Carcinoma (HCC).

Oncology Research 2018 January 20
Altered energy metabolism is a biochemical fingerprint of cancer cells. Hepatocellular carcinoma (HCC) shows reciprocal [18F]fluorodeoxyglucose (FDG) and [11C]acetate uptake, as revealed by positron emission tomography/computed tomography (PET/CT). Previous studies have focused on the role of FDG uptake in cancer cells. In this study, we evaluated the mechanism and roles of [11C]acetate uptake in human HCCs and cell lines. The expression of monocarboxylate transporters (MCTs) was assessed to determine the transporters of [11C]acetate uptake in HCC cell lines and human HCCs with different [11C]acetate uptake. Using two representative cell lines with widely different [11C]acetate uptake (HepG2 for high uptake and Hep3B for low uptake), changes in [11C]acetate uptake were measured after treatment with an MCT1 inhibitor or MCT1-targeted siRNA. To verify the roles of MCT1 in cells, oxygen consumption rate and the amount of lipid synthesis were measured. HepG2 cells with high [11C]acetate uptake showed higher MCT1 expression than other HCC cell lines with low [11C]acetate uptake. MCT1 expression was elevated in human HCCs with high [11C]acetate uptake compared to those with low [11C]acetate uptake. After blocking MCT1 with AR-C155858 or MCT1 knockdown, [11C]acetate uptake in HepG2 cells was significantly reduced. Additionally, inhibition of MCT1 suppressed mitochondrial oxidative phosphorylation, lipid synthesis, and cellular proliferation in HCC cells with high [11C]acetate uptake. MCT1 may be a new therapeutic target for acetate-dependent HCCs with high [11C]acetate uptake, which can be selected by [11C]acetate PET/CT imaging in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app