Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fluorescent Microscopy Techniques to Study Hook Length Control and Flagella Formation.

The bacterial flagellum is a sophisticated motility device made of about 30 different proteins and consists of three main structural parts: (1) a membrane-embedded basal body, (2) a flexible linking structure (the hook) that connects the basal body to, (3) the rigid filament that extends up to 10 μm from the cell surface. In Salmonella enterica serovar Typhimurium, the hook structure is controlled to a length of 55 nm by a molecular ruler protein, FliK. Only upon hook completion, FliK induces a switch in substrate specificity of the flagellar export apparatus, which allows secretion of filament-type substrates, such as flagellin. Up to 20,000 subunits of flagellin assemble one flagellar filament that extends several micrometers beyond the cell surface. The formation of hook and filament structures as hallmarks of the hook length control mechanism can be monitored by immunofluorescence microscopy as described in this chapter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app