JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Silk I and Silk II studied by fast scanning calorimetry.

Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000K/s using the Mettler Flash DSC1 on fibroin films with masses around 130-270ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealing at different temperatures, exposure to 50%MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25°C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50%MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37°C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature Tm (II)=351±2.6°C, compared to Silk I crystals which melt at Tm (I)=292±3.8°C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065s between onset and end of melting) of the FSC experiment.

STATEMENT OF SIGNIFICANCE: Silkworm silk is a naturally occurring biomaterial. The fibroin component of silk forms two types of crystals. Silk properties depend upon the amount and type of crystals, and their stability. One measure of stability is crystal melting temperature. Crystals which are more stable have a higher melting temperature. Until now, it has been challenging to study thermal behavior of silk crystals because they degrade at high temperature. To avoid degradation, and study the melting properties of silk biomaterial, we heated silk at a very fast rate of 2000K/s using a special calorimeter. We have shown that the two crystal types have very different melting temperatures, indicating that one crystal type is much more stable than the other.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app