Add like
Add dislike
Add to saved papers

Vinculin association with actin cytoskeleton is necessary for stiffness-dependent regulation of vinculin behavior.

The extracellular matrix (ECM) is a major regulator of cell behavior. Recent studies have indicated the importance of the physical properties of the ECM, including its stiffness, for cell migration and differentiation. Using actomyosin-generated forces, cells pull the ECM and sense stiffness via cell-ECM adhesion structures called focal adhesions (FAs). Vinculin, an actin-binding FA protein, has emerged as a major player in FA-mediated mechanotransduction. Although vinculin is important for sensing ECM stiffness, the role of vinculin binding to actin in the ECM stiffness-mediated regulation of vinculin behavior remains unknown. Here, we show that an actin binding-deficient mutation disrupts the ECM stiffness-dependent regulation of CSB (cytoskeleton stabilization buffer) resistance and the stable localization of vinculin. These results suggest that the vinculin-actin interaction participates in FA-mediated mechanotransduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app