Add like
Add dislike
Add to saved papers

Development of an excited-state calculation method for large systems using dynamical polarizability: A divide-and-conquer approach at the time-dependent density functional level.

In this study, we developed an excited-state calculation method for large systems using dynamical polarizabilities at the time-dependent density functional theory level. Three equivalent theories, namely, coupled-perturbed self-consistent field (CPSCF), random phase approximation (RPA), and Green function (GF), were extended to linear-scaling methods using the divide-and-conquer (DC) technique. The implementations of the standard and DC-based CPSCF, RPA, and GF methods are described. Numerical applications of these methods to polyene chains, single-wall carbon nanotubes, and water clusters confirmed the accuracy and efficiency of the DC-based methods, especially DC-GF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app