Add like
Add dislike
Add to saved papers

Nonresonant Raman Effects on Femtosecond Pump-Probe with Chirped White Light: Challenges and Opportunities.

Impulsive Raman excitation in neat organic liquids far from resonance is followed using chirped broad-band supercontinuum probe pulses. Spectral modulations due to impulsively induced coherent vibrations vary in intensity 10-fold as a function of the probe's linear chirp. Simulations clarify why the vibrational signature is maximized for a group delay dispersion (GDD) in reduced units of νvib -2 = 0.5 while a probe GDD of twice that quenches the same spectral modulations. Accordingly, recent claims that chirped white-light probe pulses provide equivalent information on material response to their compressed analogues must be taken with caution. In particular, interactions that induce spectral shifts in the probe depend crucially on the arrival chronology of the continuum colors. On one hand, this presents limitations to application of chirped continuum radiation as-is in pump-probe experiments. It also presents the opportunity for using this dependence to control the relative amplitude of nonresonant interactions in pump-probe signals such as that of solvent vibrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app