Add like
Add dislike
Add to saved papers

A Study about Regioisomeric Hydroquinones with Multiple Intramolecular Hydrogen Bonding.

A theoretical exploration about hydrogen bonding in a series of synthetic regioisomeric antitumor tricyclic hydroquinones is presented. The stabilization energy for the intramolecular hydrogen bond (IHB) formation in four structurally different situations were evaluated: (a) IHB between the proton of a phenolic hydroxyl group and an ortho -carbonyl group (forming a six-membered ring); (b) between the oxygen atom of a phenolic hydroxyl group and the proton of an hydroxyalkyl group (seven membered ring); (c) between the proton of a phenolic hydroxyl group with the oxygen atom of the hydroxyl group of a hydroxyalkyl moiety (seven-membered ring); and (d) between the proton of a phenolic hydroxyl group and an oxygen atom directly bonded to the aromatic ring in ortho position (five-membered ring). A conformational analysis for the rotation around the hydroxyalkyl substituent is also performed. It is observed that there is a correspondence between the conformational energies and the IHB. The strongest intramolecular hydrogen bonds are those involving a phenolic proton and a carbonyl oxygen atom, forming a six-membered ring, and the weakest are those involving a phenolic proton with the oxygen atom of the chromenone, forming five-membered rings. Additionally, the synthesis and structural assignment of two pairs of regioisomeric hydroquinones, by 2D-NMR experiments, are reported. These results can be useful in the design of biologically-active molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app