Add like
Add dislike
Add to saved papers

Numerical simulation of motion and deformation of healthy and sick red blood cell through a constricted vessel using hybrid lattice Boltzmann-immersed boundary method.

In the present article, hybrid lattice Boltzmann-immersed boundary method is utilized to simulate two-dimensional incompressible viscous flow involving flexible immersed red blood cell (RBC) in a microchannel. The main focus of the present research is to study motion and deformation of both healthy and sick RBCs in a vessel with different sizes of stenosis. The presented computational results consent reasonably well with the available data in the literature. Two different channels i.e. a simple and a constricted channel are investigated in the present manuscript. The results show that the RBC transfer and deform without any lift force and rotation induced when it is located on the symmetry axis of the microchannel. However, when the RBC is located off the symmetry axis, the pressure difference produced in the flow around the RBC would apply lift forces on them and expel them towards the center of the channel. The healthy RBC always shows more deformation related to the sick one along the channel. Another important result of the present research is that for the ratio of [Formula: see text] a sick RBC cannot pass the stenosis, and it reasons serious difficulties for body. The present results have been compared with the available experimental and numerical results which show good agreements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app