Add like
Add dislike
Add to saved papers

How Inter- and Intramolecular Reactions Dominate the Formation of Products in Lignin Pyrolysis.

One of the key challenges in renewable chemical production is the conversion of lignin, especially by fast pyrolysis. The complexity of the lignin pyrolysis process has hindered the elucidation of the mechanism, inhibiting further industrial implementation. By combining pyrolysis of model compounds (4-phenoxyphenol and 2-methoxy-phenoxybenzene) with lignin bond characteristics both under vacuum and under realistic pressure conditions, the roles of inter- and intramolecular reactions were established. On the one hand, the stable 4-O-5 ether bond enables, without breaking, C-C bond formation and even directly forms naphthalene depending on the position and type of the substituent. p-Benzoquinone intermediates, on the other hand, are highly unstable at ambient pressure and directly decompose into coke and carbon monoxide. The system pressure (radical concentration) plays a crucial role in the dominant reaction mechanism by initiating intramolecular reactions, interfering with intramolecular reactions. H-transfer and recombination reactions suppress the decarbonylation of phenoxy radicals, thus yielding a very different product distribution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app