Add like
Add dislike
Add to saved papers

Diploid Male Production Results in Queen Death in the Stingless Bee Scaptotrigona depilis.

As in most Hymenoptera, the eusocial stingless bees (Meliponini) have a complementary sex determination (CSD) system. When a queen makes a "matched mating" with a male that shares a CSD allele with her, half of their diploid offspring are diploid males rather than females. Matched mating imposes a cost, since diploid male production reduces the colony workforce. Hence, adaptations preventing the occurrence or attenuating its effects are likely to arise. Here we provide clear evidence that in the stingless bee Scaptotrigona depilis, the emergence of diploid males induces queen death, and this usually occurs within 10-20 days of the emergence of diploid male offspring from their pupae. Queens that have not made a matched mating die when introduced into a colony in which diploid males are emerging. This shows that the adult diploid males, and not the queen that has made a matched mating herself, are the proximate cause of queen death. Analysis of the cuticular hydrocarbon profiles of adult haploid and diploid males shows six compounds with significant differences. Moreover, the diploid and haploid males only acquire distinct cuticular hydrocarbon profiles 10 days after emergence. Our data shows that the timing of queen death occurs when the cuticular hydrocarbons of haploid and diploid males differ significantly, suggesting that these chemical differences could be used as cues or signals to trigger queen death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app